An Iterative Blind Source Separation Method for Convolutive Mixtures of Images
نویسندگان
چکیده
The paper deals with blind source separation of images. The model which is adopted here is a convolutive multi-dimensional one. Recent results about polynomial matrices in several indeterminates are used to prove the invertibility of the mixing process. We then extend an iterative blind source separation method to the multi-dimensional case and show that it still applies if the source spectra vanish on an interval. Based on experimental observations we then discuss problems arising when we want to separate natural images: the sources are non i.i.d. and have a band limited spectrum; a scalar filtering indeterminacy thus remains after separation.
منابع مشابه
Blind separation of convolutive mixtures of cyclostationary sources using an extended natural gradient method
An on-line adaptive blind source separation algorithm for the separation of convolutive mixtures of cyclostationary source signals is proposed. The algorithm is derived by a p plying natural gradient iterative learning to the novel cost function which is delined according to the wide sense cyclostationarity of signals. The efficiency of the algorithm is supported by simulations, which show that...
متن کاملNon-Negative Matrix Factorization for Blind Source Separation in Wavelet Transform Domain
This paper describes a new multilevel decomposition method for the separation of convolutive image mixtures. The proposed method uses an Adaptive Quincunx Lifting Scheme (AQLS) based on wavelet decomposition to preprocess the input data, followed by a Non-Negative Matrix Factorization whose role is to unmix the decomposed images. The unmixed images are, thereafter, reconstructed using the inver...
متن کاملAn iterative inversion approach to blind source separation
In this paper we present an iterative inversion (II) approach to blind source separation (BSS). It consists of a quasi-Newton method for the resolution of an estimating equation obtained from the implicit inversion of a robust estimate of the mixing system. The resulting learning rule includes several existing algorithms for BSS as particular cases giving them a novel and unified interpretation...
متن کاملA Time Domain Algorithm for Blind Separation of Convolutive Sound Mixtures and L1 Constrained Minimization of Cross Correlations
Abstract. A time domain blind source separation algorithm of convolutive sound mixtures is studied based on a compact partial inversion formula in closed form. An l1-constrained minimization problem is formulated to find demixing filter coefficients for source separation while capturing scaling invariance and sparseness of solutions. The minimization aims to reduce (lagged) cross correlations o...
متن کاملA Time Domain Blind Decorrelation Method of Convolutive Mixtures Based on an Iir Model
We study a time domain decorrelation method of source signal separation from convolutive sound mixtures based on an infinite impulse response (IIR) model. The IIR model uses fewer parameters to capture the physical mixing process and is useful for finding low dimensional separating solutions. We present inversion formulas to decorrelate the mixture signals and derive filter equations involving ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004